🏙️ Materi Koordinat Kartesius Dan Koordinat Kutub
Jawabanpaling sesuai dengan pertanyaan Tentukan koordinat kartesius dari koordinat kutub (-3,(4)/(6)pi).
Koordinatkartesius dan koordinat kutub dibedakan sesuai pengertiannya 2. Koordinat kartesius dikonversi ke koordinat kutub atau se- baliknya sesuai prosedur dan rumus yang berlak KARAKTER : Teliti dam cermat dalam menyelesaikan masalah trigonmetri KKM : 75 A. TUJUAN PEMBELAJARAN 1.
Hubungankoordinat kutub dan koordinat cartesius. Koordinat kutub merupakan koordinat yang ada pada cartesius yang terletak pada suatu lingkaran , sehingga koordinat kutub ditulis berdasarkan jari-jari lingkaran () dan sudut yang dibentuk terhadap sumbu X positif. Misalkan koordinat cartesius titik A adalah ( ), dan koordinat kutub titik A adalah (
MengkonversiKoordinat Kartesius ke Koordinat Kutub atau Sebaliknya • Jika pada koordinat kartesius titik P( x, y ) diketahui, maka koordinat kutub ( ) P r , θ o dapat ditentukan dengan menggunakan rumus sebagai berikut : r = x2 + y2 tan θ o = • y y ⇔ θ o = arctan x x ( Jika pada koordinat kutub titik P r , θ o ) diketahui, maka koordinat kartesius titik P( x, y ) dapat ditentukan dengan menggunakan rumus sebagai berikut : y ⇔ y = r. sin θ o r x cos θ o = ⇔ x = r. cos θ o r
Jadikoordinat kartesius titik A (√3, 1) 2. Tentukan Koordinat kartesiusnya, jika koordinat kutubnya B (4,1200)! Jawab: B (4,1200) r = 4 y=r.Sin α=4.Sin 〖120〗^0=4.1/2 √3=2√3. α = 1200 x=r.Cos α=4.Cos 〖120〗^0=4.- 1/2= -2. Jadi koordinat kartesius titik B (- 2, 2√3 ) Koordinat Kartesius ⇒ Koordinat Kutub.
penjelasanmateri1. jika diketahui koordinat kutub, maka cara mencari koordinat kartesius 2. jika diketahui koordinat kartesius, maka cara mencari koordinat
Jikadiketahui koordinat kartesius (x, y) maka koordinat kutubnya (r, α) adalah sebagai berikut: Contoh Soal 1. Nyatakan kedalam koordinat kartesius dari titik P(8, 150 °) Jawaban . Diketahui bahwa titik P(8, 150 °), artinya r = 8 dan α = 150 ° Jadi, koordinat kartesiusnya adalah P(-4√3, 4) Contoh Soal 2. Ubah kedalam koordinat kutub dari titik R (10 √2, - 10 √2) Jawaban . Diketahui bahwa titik R (10 √2, - 10 √2), artinya x = 10 √2 dan y = -10 √2. Note : Nilai tan α = -1
soalpilihan ganda koordinat kartesius kelas 8 beserta, koordinat kutub dan koordinat cartesius pada trigonometri, b koordinat kartesius dan kutub slideshare, koordinat kartesius pengertian sistem diagram dan, cara mencari titik tengah ruas garis 9 langkah dengan, contoh soal dan pembahasan sistem koordinat garis dan, sistem koordinat geometri
ContohSoal Koordinat Kartesius dan Jawaban [+Pembahasan] - Sistem koordinat adalah suatu cara yang digunakan untuk mendeskripsikan posisi atau letak suatu titik pada bidang (Vossler, 2000).Beberapa sistem koordinat yang sering kita kenal adalah sistem koordinat kartesius, sistem koordinat polar, sistem koordinat tabung dan sistem koordinat bola.
Buf2rCy. Berikut ini adalah Soal-Soal Koordinat Kartesius dan Koordinat Kutub beserta pembahasannya. Kami berharap kiranya postingan ini bermanfaat bagi teman-teman guru, adik-adik siswa. Agar manfaatnya juga dirasakan oleh orang banyak. Mohon keikhlasan hatinya membagikan postingan ini di media sosial kalian. Atas kebaikan hatinya kami ucapkan banyak terima Cara Belajar Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cocokkanlah jawaban kamu dengan pembahasan yang telah disediakan, dengan cara klik "Lihat/Tutup". Soal No. 1 Koordinat Cartesius titik $P6,60{}^\circ $ adalah …. A $\left 3,3\sqrt{7} \right$ B $\left 3\sqrt{3},3 \right$ C $\left 3,3\sqrt{3} \right$ D $\left 3,\sqrt{3} \right$ E $\left 5,3\sqrt{3} \right$Penyelesaian Lihat/Tutup Koordinat kutub $P6,60{}^\circ $ diperoleh $r=6$, $\theta =60{}^\circ $ maka $\begin{align} x &=r.\cos \theta \\ &=6.\cos 60{}^\circ \\ &=6.\frac{1}{2} \\ x &=3 \end{align}$ $\begin{align} y &=r.\sin \theta \\ &=6.\sin 60{}^\circ \\ &=6.\frac{1}{2}\sqrt{3} \\ y &=3\sqrt{3} \end{align}$ Jadi, koordinat kartesius dari titik $P6,60{}^\circ $ adalah $Px,y=P\left 3,3\sqrt{3} \right$ Jawaban C Soal No. 2 Koordinat kutub dari titik $C6\sqrt{3},6$ adalah …. A $\left 12,30{}^\circ \right$ B $\left 6,60{}^\circ \right$ C $\left 12,60{}^\circ \right$ D $\left 6,30{}^\circ \right$ E $\left 6\sqrt{3},60{}^\circ \right$Penyelesaian Lihat/Tutup Koordinat cartesius titik $C6\sqrt{3},6$ diperoleh $x=6\sqrt{3}$ dan $y=6$ maka $\begin{align} r &=\sqrt{{{x}^{2}}+{{y}^{2}}} \\ &=\sqrt{{{6\sqrt{3}}^{2}}+{{6}^{2}}} \\ &=\sqrt{108+36} \\ r &=12 \end{align}$ $\begin{align}\tan \theta &=\frac{y}{x} \\ &=\frac{6}{6\sqrt{3}} \\ &=\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ \tan \theta &=\frac{1}{3}\sqrt{3} \end{align}$ karena titik $C6\sqrt{3},6$ terletak di kuadran I maka $\tan \theta =\frac{1}{3}\sqrt{3}\Leftrightarrow \theta =30{}^\circ $ Jadi, koordinat kutub dari titik $C6\sqrt{3},6$ adalah $Cr,\theta =C12,30{}^\circ $. Jawaban A Soal No. 3 Diketahui koordinat kutub titik $A4,150{}^\circ $, koordinat kartesiusnya adalah … A $\left 2\sqrt{2},2 \right$ B $\left -2\sqrt{3},2 \right$ C $\left 2,-2\sqrt{3} \right$ D $\left -2\sqrt{3},-2 \right$ E $\left 2\sqrt{3},-2 \right$Penyelesaian Lihat/Tutup Koordinat kutub $A4,150{}^\circ $ diperoleh $r=4$ dan $\theta =150{}^\circ $ maka $\begin{align} x &=r.\cos \theta \\ &=4.\cos 150{}^\circ \\ &=4.\cos 180{}^\circ -30{}^\circ \\ &=4.-\cos 30{}^\circ \\ &=4.-\frac{1}{2}\sqrt{3} \\ x &=-2\sqrt{3} \end{align}$ $\begin{align}y &=r.\sin \theta \\ &=4.\sin 150{}^\circ \\ &=4.\sin 180{}^\circ -30{}^\circ \\ &=4.\sin 30{}^\circ \\ &=4.\frac{1}{2} \\ y &=2 \end{align}$ Jadi, koordinat kartesius dari titik $A4,150{}^\circ $ adalah $Ax,y=A-2\sqrt{3},2$. Jawaban B Soal No. 4 Koordinat Cartesius dari titik $\left 4\sqrt{3},300{}^\circ \right$ adalah …. A $\left 2\sqrt{3},6 \right$ B $\left 2\sqrt{3},-6 \right$ C $\left -2\sqrt{3},-6 \right$ D $\left 6,-2\sqrt{3} \right$ E $\left -6,2\sqrt{3} \right$Penyelesaian Lihat/Tutup Koordinat kutub $\left 4\sqrt{3},300{}^\circ \right$ diperoleh $r=4\sqrt{3}$ dan $\theta =300{}^\circ $ maka $\begin{align}x &=r.\cos \theta \\ &=4\sqrt{3}.\cos 300{}^\circ \\ &=4\sqrt{3}.\cos 360{}^\circ -60{}^\circ \\ &=4\sqrt{3}.\cos 60{}^\circ \\ &=4\sqrt{3}.\frac{1}{2} \\ x &=2\sqrt{3} \end{align}$ $\begin{align}y &=4\sqrt{3}.\sin \theta \\ &=4\sqrt{3}.\sin 300{}^\circ \\ &=4\sqrt{3}.\sin 360{}^\circ -60{}^\circ \\ &=4\sqrt{3}.-\sin 60{}^\circ \\ &=4\sqrt{3}.\left -\frac{1}{2}\sqrt{3} \right \\ y &=-6 \end{align}$ Jadi, koordinat kartesius dari titik $\left 4\sqrt{3},300{}^\circ \right$ adalah $Ax,y=A2\sqrt{3},-6$. Jawaban B Soal No. 5 Diketahui titik $A4,120{}^\circ $ dan $B8,60{}^\circ $. Panjang AB adalah … A $8\sqrt{3}$ B 6 C $4\sqrt{3}$ D $2\sqrt{3}$ E $\sqrt{3}$Penyelesaian Lihat/Tutup $A4,120{}^\circ $ maka ${{r}_{1}}=4$ dan ${{\theta }_{1}}=120{}^\circ $ $B8,60{}^\circ $ maka ${{r}_{2}}=8$ dan ${{\theta }_{2}}=60{}^\circ $ Jarak titik A dan B adalah panjang ruas garis AB. Gunakan rumus jarak dua titik koordinat kutub, yaitu $\begin{align}AB &=\sqrt{r_{1}^{2}+r_{2}^{2}-2.{{r}_{1}}.{{r}_{2}}.\cos \left {{\theta }_{2}}-{{\theta }_{1}} \right} \\ &=\sqrt{{{4}^{2}}+{{8}^{2}} \left 60{}^\circ -120{}^\circ \right} \\ &=\sqrt{16+64-64.\cos \left -60{}^\circ \right} \\ &=\sqrt{80-64.\frac{1}{2}} \\ &=\sqrt{48} \\ AB &=4\sqrt{3} \end{align}$ Jawaban C Soal No. 6 Koordinat titik Q adalah $\left \frac{1}{2}\sqrt{2},\frac{1}{2}\sqrt{2} \right$. Posisi titik Q dalam koordinat kutub adalah …. A $\left 1,\frac{1}{3}\pi \right$ B $\left 1,\frac{1}{6}\pi \right$ C $\left \frac{1}{2},\frac{1}{3}\pi \right$ D $\left 1,\frac{1}{4}\pi \right$ E $\left 1,\frac{1}{3}\pi \right$Penyelesaian Lihat/Tutup Koordinat cartesius $Q\left \frac{1}{2}\sqrt{2},\frac{1}{2}\sqrt{2} \right$ diperoleh $x=\frac{1}{2}\sqrt{2}$ dan $y=\frac{1}{2}\sqrt{2}$ maka $\begin{align}r &=\sqrt{{{x}^{2}}+{{y}^{2}}} \\ &=\sqrt{{{\left \frac{1}{2}\sqrt{2} \right}^{2}}+{{\left \frac{1}{2}\sqrt{2} \right}^{2}}} \\ &=\sqrt{\frac{1}{2}+\frac{1}{2}} \\ r &=1 \end{align}$ $\begin{align}\tan \theta &=\frac{y}{x} \\ &=\frac{\frac{1}{2}\sqrt{2}}{\frac{1}{2}\sqrt{2}} \\ \tan \theta &=1 \end{align}$ Titik $Q\left \frac{1}{2}\sqrt{2},\frac{1}{2}\sqrt{2} \right$ terletak di kuadran I, maka $\tan \theta =1\Leftrightarrow \theta =45{}^\circ $ Jadi, koordinat kutub dari titik $Q\left \frac{1}{2}\sqrt{2},\frac{1}{2}\sqrt{2} \right$ adalah $Qr,\theta =Q1,45{}^\circ =Q\left 1,\frac{1}{4}\pi \right$. Jawaban D Soal No. 7 Koordinat titik P adalah $3,30{}^\circ $, posisi titik P pada koordinat cartesius adalah …. A $\left \frac{3}{2},\frac{3}{2}\sqrt{3} \right$ B $\left \frac{3}{2}\sqrt{2},\frac{3}{2} \right$ C $\left 3,\frac{3}{2} \right$ D $\left 3,\frac{3}{2}\sqrt{3} \right$ E $\left \frac{3}{2}\sqrt{3},3 \right$Penyelesaian Lihat/Tutup Koordinat kutub $P3,30{}^\circ $ diperoleh $r=3$ dan $\theta =30{}^\circ $ maka $\begin{align} x &=r.\cos \theta \\ &=3.\cos 30{}^\circ \\ &=3.\frac{1}{2}\sqrt{3} \\ x &=\frac{3}{2}\sqrt{3} \end{align}$ $\begin{align}y &=r.\sin \theta \\ &=3.\sin 30{}^\circ \\ &=3.\frac{1}{2} \\ y &=\frac{3}{2} \end{align}$ Jadi, koordinat cartesius dari titik $P3,30{}^\circ $ adalah $Px,y=P\left \frac{3}{2}\sqrt{3},\frac{3}{2} \right$. Jawaban B Soal No. 8 Koordinat kartesius dari titik $P1,y$ dan koordinat kutubnya adalah $P\sqrt{2},\beta $. Jika titik P terletak di kuadran I, maka nilai $y$ dan $\beta $ berturut-turut adalah …. A 3 dan $30{}^\circ $ B 1 dan $45{}^\circ $ C 1 dan $135{}^\circ $ D 2 dan $225{}^\circ $ E 1 dan $315{}^\circ $Penyelesaian Lihat/Tutup Koordinat kartesius $P1,y$ diperoleh $x=1$ dan $y=y$. Titik P terletak di kuadran I maka $y>0$. Koordinat kutub $P\sqrt{2},\beta $ diperoleh $r=\sqrt{2}$ dan $\theta =\beta $ $\begin{align}{{r}^{2}} &={{x}^{2}}+{{y}^{2}} \\ {{\left \sqrt{2} \right}^{2}} &={{1}^{2}}+{{y}^{2}} \\ 2 &=1+{{y}^{2}} \\ 1 &={{y}^{2}} \\ y &=1 \end{align}$ $\begin{align}\tan \theta &=\frac{y}{x} \\ \tan \beta &=\frac{1}{1} \\ \tan \beta &=1 \end{align}$ Karena titik P dikuadran I maka $\tan \beta =1\Leftrightarrow \beta =45{}^\circ $. Jadi, nilai $y$ dan $\beta $ berturut-turut adalah 1 dan $45{}^\circ $. Jawaban B Soal No. 9 Koordinat kutub dari titik $-1,\sqrt{3}$ adalah …. A $2,120{}^\circ $ B $2,240{}^\circ $ C $2,300{}^\circ $ D $2,330{}^\circ $ E $2,360{}^\circ $Penyelesaian Lihat/Tutup Koordinat kartesius titik $-1,\sqrt{3}$ diperoleh $x=-1$, $y=\sqrt{3}$ maka $\begin{align}r &=\sqrt{{{x}^{2}}+{{y}^{2}}} \\ &=\sqrt{{{-1}^{2}}+{{\left \sqrt{3} \right}^{2}}} \\ &=\sqrt{1+3} \\ r &=2 \end{align}$ $\begin{align}\tan \theta &=\frac{y}{x} \\ &=\frac{\sqrt{3}}{-1} \\ \tan \theta &=-\sqrt{3} \end{align}$ Karena titik $-1,\sqrt{3}$ terletak di kuadran II maka $\tan \theta =-\sqrt{3}\Leftrightarrow \theta =120{}^\circ $ Jadi, koordinat kutub dari titik $-1,\sqrt{3}$ adalah $r,\theta =2,120{}^\circ $. Jawaban A Soal No. 10 Koordinat kutub $8,30{}^\circ $ jika dinyatakan dalam koordinat cartesius adalah … A $\left 4,4\sqrt{3} \right$ B $\left 4\sqrt{3},4 \right$ C $\left 4\sqrt{2},4 \right$ D $\left 4\sqrt{2},4\sqrt{3} \right$ E $\left 4,4\sqrt{2} \right$Penyelesaian Lihat/Tutup Koordinat kutub $8,30{}^\circ $ diperoleh $r=8$ dan $\theta =30{}^\circ $ maka $\begin{align}x &=r.\cos \theta \\ &=8.\cos 30{}^\circ \\ &=8.\frac{1}{2}\sqrt{3} \\ x &=4\sqrt{3} \end{align}$ $\begin{align}y &=r.\sin \theta \\ &=8.\sin 30{}^\circ \\ &=8.\frac{1}{2} \\ y &=4 \end{align}$ Jadi, koordinat cartesius dari titik $8,30{}^\circ $adalah $x,y=4\sqrt{3},4$. Jawaban B Subscribe and Follow Our Channel
0% found this document useful 0 votes466 views3 pagesOriginal TitleMateri Koordinat Cartesius dan Koordinat Kutub Kelas XCopyright© © All Rights ReservedShare this documentDid you find this document useful?0% found this document useful 0 votes466 views3 pagesMateri Koordinat Cartesius Dan Koordinat Kutub Kelas XOriginal TitleMateri Koordinat Cartesius dan Koordinat Kutub Kelas XJump to Page You are on page 1of 3Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
Tentu Quipperian pernah memanfaatkan fitur shareloc, kan? Nah, saat Quipperian menggunakan fitur tersebut, akan muncul angka-angka yang merupakan posisi titik lokasi yang dimaksud. Susunan angka-angka itu disebut sebagai titik koordinat. Biasanya, titik koordinat itu ditulis dalam bentuk koordinat Cartesius. Ingin tahu selengkapnya? Pengertian Koordinat Cartesius Koordinat Cartesius adalah sistem koordinat yang memuat angka-angka tertentu di setiap bidangnya yang ditulis dalam bentuk x,y. Koordinat ini ditemukan oleh seorang ahli Matematika asal Prancis, yaitu Rene Descartes. Ciri utama koordinat Cartesius adalah adanya dua garis tegak lurus yang saling berpotongan di suatu titik. Kedua garis tersebut dinamakan sebagai sumbu koordinat. Sistem Koordinat Cartesius Sistem koordinat Cartesius memuat dua buah sumbu, yaitu sumbu yang arahnya vertikal atau biasa disebut sumbu Y dan sumbu yang arahnya horizontal atau sumbu X. Perhatikan gambar berikut. Sumber Pustekkom Kemdikbud Berdasarkan gambar di atas, sumbu koordinatnya diberi warna biru. Sumbu Y disebut juga koordinat dan sumbu X disebut juga absis. Selain itu, terdapat tiga kondisi garis yaitu sebagai berikut. 1. Garis yang saling sejajar Suatu garis dikatakan sejajar jika keduanya tidak akan pernah bertemu ujung dan pangkalnya. Hal itu karena kedua garis memiliki gradien yang sama. Contoh garis sejajar adalah garis L dan N. 2. Garis yang saling tegak lurus dan berpotongan Dua garis dikatakan tegak lurus jika keduanya saling berpotongan di suatu titik dan membentuk sudut 90o. Garis yang saling tegak lurus adalah garis K dan N serta garis K dan sumbu X. Titik perpotongan tersebut sama dengan titik koordinat Cartesius. 3. Garis yang memotong Dua garis dikatakan memotong jika keduanya berpotongan di suatu titik. Garis yang saling berpotongan adalah garis M dan L serta garis M terhadap sumbu X dan Y. Titik perpotongan tersebut sama menunjukkan titik koordinat Cartesius. Terdapat empat daerah pada sistem koordinat ini, yaitu daerah kuadran I, II, III, dan IV. Berikut ini contohnya. Daerah kuadran I memiliki nilai absis x dan ordinat y yang semuanya positif. Daerah kuadran II memiliki nilai absis x yang semuanya negatif dan ordinat y yang semuanya positif. Daerah kuadran III memiliki nilai absis x dan ordinat y yang semuanya negatif. Daerah kuadran IV memiliki nilai absis x yang semuanya positif dan ordinat y yang semuanya negatif. Adapun rumus koordinat Cartesius adalah x,y, dengan x = nilai absis sumbu X dan y = nilai ordinat sumbu Y. Untuk lebih jelasnya, perhatikan contoh diagram Cartesius adalah sebagai berikut. Pada diagram di atas, terdapat dua titik koordinat yaitu titik A dan titik B. Untuk menuliskan titik koordinatnya, kamu tentukan dahulu nilai sumbu X dan sumbu Y-nya. Pada diagram di atas titik A = 5,10 karena absisnya berada di skala 5 dan ordinatnya berada di skala 10. Itu artinya, titik A berada di daerah kuadran I; dan titik B = 15,-5 karena absisnya berada di skala 15 dan ordinatnya berada di skala -5. Itu artinya, titik B berada di daerah kuadran IV. Agar Quipperian semakin paham dengan materi kali ini, yuk simak contoh soal koordinat Cartesius berikut. Contoh Soal 1 Sebuah bangun datar dibentuk dari titik koordinat A -1,3, titik B 1,3, titik C -2,1, dan titik D 2,1. Tentukan luas bangun datar tersebut! Pembahasan Pertama, kamu harus menentukan posisi titik koordinat yang disebutkan pada soal. Titik A -1,3 -> titik absis = -1, titik ordinat = 3 kuadran II Titik B 1,3 -> titik absis = 1, titik ordinat = 3 kuadran I Titik C -2,1 -> titik absis = -2, titik ordinat = 1 kuadran II Titik D 2,1 -> titik absis = 2, titik ordinat = 1 kuadran I Berikut ini posisi titik-titik A, B, C, dan D pada diagram Cartesius. Jika keempat titik dihubungkan, ternyata membentuk bangun trapesium sama kaki dengan ketentuan seperti berikut. Tinggi bangun = 3 satuan Sisi AB = 3 satuan Sisi CD = 4 satuan Dengan demikian, luas trapesium ABCDnya adalah sebagai berikut. Jadi, luas bangun datar tersebut adalah 10,5 satuan luas. Contoh Soal 2 Galih menggambar dua buah garis, yaitu garis P dan Q. Garis P sejajar dengan sumbu X dan memotong sumbu Y di titik koordinat 0,4. Sementara itu, garis Q sejajar sumbu Y dan memotong sumbu X di titik koordinat 5,0. Tentukan titik koordinat perpotongan garis P dan Q! Pembahasan Gambarkan garis P dan Q pada diagram Cartesius seperti berikut. Dari diagram Kartesius di atas, terlihat bahwa garis P dan Q berpotongan di titik koordinat 5,4. Jadi, garis P dan Q akan berpotongan di titik koordinat 5,4. Contoh Soal 3 Koordinat titik K dan L berturut-turut adalah -3,2 dan -6,-1. Agar terbentuk bangun segitiga sama kaki, titik M harus diletakkan pada koordinat berapa? Pembahasan Gambarkan titik tersebut pada diagram Cartesius berikut. Agar membentuk bangun segitiga sama kaki, titik M harus diletakkan di koordinat -2, -1. Jadi, titik M harus diletakkan pada koordinat -2,-1. Quipperian, sekian dulu pembahasan Quipper Blog tentang Koordinat Cartesius, ya. Semoga artikel ini cukup membantu kamu untuk memahami materi yang satu ini. Kalau kamu masih mau belajar materi ini lebih dalam atau materi lainnya, yuk gabung bersama Quipper Video! Belajar Matematika jadi seru dan menyenangkan! Penulis Eka Viandari
materi koordinat kartesius dan koordinat kutub